摩尔定律还在运行吗?
摩尔定律(Moore’s law)预测,集成电路(IC)中封装的晶体管数量将每两年翻一番,而计算成本将减半,这一预测具有显著的长期性。1965年,当英特尔联合创始人兼名誉主席戈登·摩尔(Gordon Moore)做出这一大胆的观察时,很少有人会想到,最先进的微芯片有一天会包含10亿个以上的电路。50多年来,由于电路不断缩小,计算设备一年又一年地稳步地变得更小、更快、更便宜。
但摩尔定律与物理定律背道而驰。领先的铸造厂和芯片制造商正在达到工艺技术的物理极限,至少我们今天知道这一点。从7纳米(nm)迁移到5纳米及更小的节点变得非常困难,成本也非常高。集成电路性能、密度和成本降低方面的收益现在是递增的。随着摩尔定律的不断发展,通过多核体系结构、软件、人工智能和机器学习、互连、封装和材料科学的进步,计算能力和效率将实现有意义的飞跃。
同时,摩尔定律对于独立于5nm技术制造的其他类型的半导体器件仍有余生,包括那些包含模拟电路或根本没有晶体管的器件。硅基微机电系统(MEMS)硅晶振就是一个很好的例子。
晶振是电子系统的心跳,传递准确、稳定的信号——就像人类的心跳一样——为系统中的所有数字组件提供参考。定时装置包括无源谐振器、有源振荡器、集成时钟发生器和缓冲器,每一个都为系统提供不同的功能。晶振内部有两个基本部件:以共振频率振动的谐振器和将这些振动转换为电信号并进行分配的模拟IC。这些组件组合在一个封装系统(SIP)设备中,以形成一个集成的定时解决方案。
大多数谐振器都基于石英晶振,在制造过程中需要精确切割才能达到所需的谐振频率。虽然石英是一种成熟、广泛使用的技术,在电子行业已经服务了70多年,但它也有一些局限性,如尺寸、易碎性、对机械应力的敏感性,以及随时间和温度的老化效应。此外,由于这些固有的限制以及制造和包装限制,摩尔定律不适用于石英技术。
摩尔定律是由半导体制造业的进步实现的,每一代新工艺技术,尤其是光刻技术,都会增加晶体管密度。相比之下,MEMS的进步并不是源于工艺制造,而是源于MEMS技术和IC设计的创新。虽然摩尔定律不直接适用于硅MEMS定时器件的设计和制造,但从石英迁移到MEMS硅晶振的好处是可比的:能够扩大生产规模,实现指数级更小的尺寸、更低的成本和更高的性能。
与摩尔定律使晶体管密度加倍、功率减半的原理类似,基于SiTime MEMS的硅晶振每一代都在不断改进关键计时指标。
近年来,MEMS硅晶振技术已成为石英谐振器的一种优越替代品。与石英谐振器相比,基于硅MEMS的谐振器在技术和设备性能方面正在经历指数级的改进,从而实现了更高的性能、更低的功耗、更小的尺寸和更好的可编程性。在恶劣环境中,包括不断变化的温度、冲击和振动,它们通常也更坚固可靠。
由于这些原因,基于SiTime MEMS的计时解决方案正在广泛的市场上迅速取代石英,包括消费电子、物联网、计算、5G基础设施、工业自动化、汽车和航空航天防御。今天80亿美元的计时产业从石英到硅MEMS技术的转变速度有多快?
时间会证明一切。
- MEMS振荡器为何具有较高的耐久性和可靠性2024-07-19 15:01:537500
- 深入了解MEMS辅助温度传感器为何具有 20-µK 分辨率2024-07-18 10:39:036000
- SiTime具有 40 μK 分辨率的DualMEMS 谐振器时间数字转换器2024-07-17 11:21:013600
- 深入分析低带宽锁相环的高稳定性为何受控振荡器影响2024-07-16 18:02:338800
- ±0.01ppm高精度温补振荡器SiT5501如何改变边缘网络的精确计时市场2024-01-17 00:00:008870
- ±0.1ppm高精度温补振荡器SiT7910如何为航空航天和国防提供25倍精准计时2023-03-17 10:38:231433227
- 汽车级晶振选型设计指南2022-06-28 09:14:544800
- SiTime硅晶振在SSD存储中的应用2022-05-23 09:51:424400
- 示波器的两个最重要参数之示波器宽带和采样率详解2022-04-02 13:32:204000
- SiTime推出高性能XCalibur™有源谐振器SiT14082022-02-08 09:47:598022
- 汽车级晶振为自动驾驶ADAS保驾护航2021-08-20 13:39:175884